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. ABSTRACT

A spatial marchin,4 analysis is given for economical computation of three-

dimensional viscous suhsonic flows in rotating geometries. The governing

equations are based on a 3mall scalar potential approximat-ion for the

- vector-decomposed secondar¢ flow velocity. No approximation is needed for the

" streamwise pressure gradien term and this allows strong viscous secondary

flows, coordinate curvature and system rotation effects to influence these

pressure gradients. This approach is applied to three-dimensional laminar and

turbulent flows in rotating 90 degree bends and in rotating straight pipes and

* ducts. The predicted structure of these flows is consistent with experimental

observations and measurements. Computer solutions obtained using 500,000 grid

points require only about 15 minutes of CRAY-IS run time. This approach appears

promising for further development and application to centrifugal impeller and

other turbomachinery flows.

INTRODUCTInN

The influence of system rotation on turbulent internal flows is known to

have a major effect on tirbomachinery performance, vet the phenomenon Is poorly

iinc!Prstood. Although used fairly extensively, centriftigal machines have In the

past been designed largely on an empirical basis. In support of the empirical

Ap'rolach, the acquisition of experimental data from actual machines has been

otto extensive. However, few fundamental experiments desig.ned to isolate

various rotation effects have been performed and consequently the understandi u,

,f the fundamenta t f lui ,,,,,chanics of centrifu gal devices is st i I I rather

spa rso,. The obiective of the present investigation is to develop an economical

muthlod for computing three-dimensional viscous flows with sYstem rotation, whot,

1-upe will enhance the understanding and allow prediction of important physical

e ,f rts of r,)ating flow in centrifugal turbomachines.

Thek extrrune romp e xi tv of most t rho lent rot atinug flow-- presents ain obstacor
- fr the tit i 1i zat ion of compitat iona [ methods. S uch flows are tfhrtt-dimensioncif

, ;T rl ichtar tri ied hv I r e secondary vort Ici tv and vel oc i ty V er r;it oi by tuirni .

ind ,orliis effects, trblent shear layers, tip clearanc, effects and other

*,I I pie I eith I s-alo flow strictures. Solcition of the three-dimens inal ,

- ] - -



averaged Navier-Stokes equations avoids making physical approximations other

than those associated with turbulence modeling. However, this approach is very

costly, even with modern supercomputers, because the flow structures of

practical interest are very complicated and accurate resolution of these flow

structures is expected to require very large mesh densities. To avoid this high

cost of solution, physical/mathematical approximations have been developed which

reduce the steady subsonic Navier-Stokes equation to a non-elliptic form which

is well-posed for solution as a spatial forward-marching initial/boundary-value

problem. The advantage of such an approach is that forward-marching solution

algorithms can be devised which are much less costly in terms of computer

resources (run time and storage) than algorithms for the elliptic Navier-Stokes

equations. The trade-offs are that (a) additional error due to the physical/

mathematical approximations are introduced, and (b) the range of flow problems

which can realistically be addressed is restricted relative to the Navier-Stokes

equat'ons because of factors such as flow separation, stagnation points and

transonic effects. Nevertheless, this approach seems well suited for a number

of rotating internal ducted flows at or near design conditions, and can provide
verv high resolution of three-dimensional viscous flow structures at relatively

low cost. In addition, the spatial marching approach can provide a large number

of detailed flow calculations at moderate cost, for use in design optimization

studies.

Two basic types of physical/mathematical approximations have been suggested

to reduce the Navier-Stokes equations to a non-elliptic form well-posed for

forw4ard-marching solution. Approximations in both viscous and inviscid terms in

the Navier-Stokes equations are necessary to obtain non-elliptic (well-posed)

approximating equations. First. a coordinate system for flow geometry being

considered must be constructed such that streamwise (marching) coordinates can

be identified. The viscous approximation entails neglecting terms representing

streamwise diffusion. In addition, two types of inviscid approximations have

been suggested: (a) an assumed form for the streamwise pressure gradient term,

and (h) a small scalar potential approximation for the secondary flow. Either

of these approximations produces non-elliptic governing equations.

The Inviscid approximation which assumes a given form for the streamwise

prosure gradient term has obvious roots In two-dimensional boundary laver

theorv, and has been used extensively. Variants of this approach have been

used, for example, by Patankar and Spalding, fRef. 11, Carreto, Curr and Spaldili'
. I",
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[Ref. 21, Briley [Ref. 3], Ghia and Sokhey [Ref. 4], Kreskovsky, Briley and

McDonald [Ref. 5] and Levy, Briley and McDonald [Ref. 61 to compute flow without

system rotation and by Howard, Patankar and Bordynuik [Ref. 7] and Majumdar,

Pratap and Spalding [Ref. 8] to compute flows with system rotation. Although

the approximation of streamwise pressure gradients can provide reasonable

accuracy for many problems, this type of approximation does not allow the

streamwise momentum equation to he influenced by experimentally observed

distortions of the static pressure field which are induced by large secondary

flows associated with duct curvature and system rotation.

A second type of inviscid approximation (termed the small-scalar potential

approximation) has been investigated recently by Briley and McDonald (Ref. 9).

This approximation does not employ an approximation for streamwise pressure

gradient terms and instead approximates convective terms in the secondary-flow

momentum equations by neglecting the scalar-potential component of a vector-

decomposed secondary-flow velocity field which corrects the transverse velocity

vector from an a priori potential flow solution. This approximation allows

strong viscous secondary flows and curvature terms to influence streamwise

pressure gradients in the primary flow momentum equation. It should be noted

that the small scalar approximation is especially advantageous for rotating

flows because such flows are generally rotational even when inviscid, and this

precludes any convenient method of introducing an inviscid pressure

approximation, such as imposing streamwise pressure gradients from a potential

flow.

In the present report, a derivation of the approximating small scalar

potential equations is given for a rotating coordinate system. Computed results

for three-dimensional viscous flow in simple confined rotating geometries are

given. Some results for laminar flow in a rotating 90 degree bend and for

turbulent flow in rotating straight ducts, previously reported by Lin, Briley

and McDonald (Ref. 10) are included as part of the present final report. In

addition, computed results for turbulent flow in a rotating QO degree bend are

given.

\NAYS [S

The small scalar-potential approximatlon Is considered in detail for

non-rotattlng coordinate svt,,ms In Ref. 9. The present analys is considers the

-1-%
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derivation of the applicable approximating equations for a rot at in coordinate

system. The governing equations are derived throutgh approx1 mat itlin made

relative to a curvilinear orthogonal coordinate system i tti t ;) and a I g ned

with the flow geometry under consideration.

Equations governing the primary flow velocity, 1p), tiO i ., rv flow

vorticitv, 0, normal to the transverse coordi nate srt .i.. ir, I,, r tv,, ttII zing

approximations which permit solution of the equatio on .t- i iit n i va I ts

problem. Terms representing diffusion normal to the tr itv,- ,,rd lnateo

planes are neglected. The contribution of scalar-pot,,nti t I 'outs of

secondary velocities in convective terms of the cros, t lew mnmt,nt om equat ions is

assumed small and is neglected. No approximation is m ,l, tor pre,;sure gradient

terms, and the static pressure field is determined as part of the forward-

marching solution process. Secondary-flow velocities art determined from scalar

and vector potential calculations in transverse coordinate suirfaces once the

primary velocity and secondary vorticity are known.

p} Compressible Navier-Stokes Equations in Rotating Coordinate System

The continuity and momentum equations for steady compressible flow relative

to rotating coordinate system in vector forms are given by

V pii = o(1)

pM P p{ -V)OIi + p'Vp -F+ 2(w XU) + W X(WAXr)} 0 (2)

where p is density and U is velocity relative to rotating coordinate system. p

denotes pressure and F denotes force due to viscous stress. W is the system

rotation vector, r is the position vector. The equation of state for a perfect

gas is given bv

P = pRT (3)

where R Is gas constant and T is temperature. In the present study, the flows

-",-" are low Mach numher subsoni c flows with negi ble heat transfer so the

--

/ -; -. .- -.-. . . . .. . . .- .. . . . .. . .. . . .



equation can he omitted from consideration. For constant stagnation energy, the

gas law can he written as

P - L p(EO-U-2) (4)

where y is the specific heat ratio.

In the following, coordinates x,y,z, velocity components u,v,w and the unit

vectors ii,i 2 ,i3 , in the x-, y- and z- directions, respectively, refer to a

general rotatinv orthogonal coordinate system. The metric coefficients are

denoted hi, h 2 and h 3 .

Secondary Velocity Decomposition

The analysis is based on a decomposition of the secondary velocity vector

into vector components derived from scalar and vector surface potentials,

*'' denoted and O, respectively. The velocity vector is written as

S u + 0, (5)

where u is the primary velocity and Us denotes the secondary velocity. The

secondary velocity is written as

- = 2 v + 13 w (6 )

and is decomposed as follows:

" U, VS + P( 7)

Here, V5 is the transverse surface gradient operator, given for orthogonal

coordinate- by

V6 ~ J + aVS hay3().

o-. V, =*, .- . .+

PIA>. ,, t - . S I -- ---



The transverse velocity components can he expressed as

v = V + v4 , W = W + W (9)

using (7), (8), (9), the decomposed transverse velocity components are given in

orthogonal coordinates by

++ t - _ _ _____ (10a)

h d2 y hlh 3 p az

WW + Wq hh 3hi 4,
h 3 Oz h- h h 2 P  aY (lob)

The decomposition of secondary velocity v, w into v , v,, w ,, introduces

two additional dependent variables and thus requires two additional equations to

close the set of governing equations. The additional equations are obtained

from vector identities associated with the decomposition, as discussed later.

Physical Approximations

Inviscid Approximations for Convective Terms

For convenience in defining the present approximations, a parameter, 6, (to

be assigned a value of 0 or 1) is introduced in the expressions for transverse

velocity components as follows,

v= v+ v,, = v#+ v. (11)

W W= +W, O W4,W (12)

The parameter, 6, will be used to define approximations in the convective terms.

_1ing (11) and (12), the components of the convective term C(r) -(P-V)!) can

he expressed in orthnoional coordinates as follows:

-6-
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, U'V u + U( VK12 + wK,3 ) -vK 2 1 - W 2 K3 1) (3

%02 U -V7 - u(UK 12 -K K 21 -w(WK 32  23) (4

03 =U -VZ - U( U K13 - 'ZK 3) + v(WK 3 vK23) (15)

where the quantities Kjj are the geodesic curvatures of the coordinates,

defined by

KV. K. (hih )-I ah (6
ax.

and inwich x1,x 2 ,x3 are interchangeable with x,y,z, rosnoctivelv. The small

scalar-potential approximation is made hy setting B--O in (11) andi (12) and

hence, in 0,,3; no approximation is made in C1. If B-1, then v w__v)w, and the

above expressions for C2 ,C3 revert to C2 ,C 3 , their exact rr.

Viscous Approximation Neglecting Streamwise Diffusion

The visouis force, F, in (2) can he written as

pF -XiS)+( 2u)(0 (17)

* whoe x1 is vorticity and ii and X are viscosity coefficients. For moderate

*.subse;nic- Mach number V [1U is small, and the last term in ( 17) is neglected.

All viscous, terms which contain either a derivative with respect to x or those

containing v or w are of smaller order than remaining terms and are

nvg1.(tF'd. Neglecting these terms give the following approximations:

rVr t-he i ;c force F'

(h h h )pF' a h Ih h+th 2hKM

hz h ~ u ~ a

a. -A -- 14 A



and for the transverse components of viscous force F 2', F 3':

(hih 3p _ a (h I 4 ()a(h h pF = , z (19a)

(,,, hlh 2 ) pF3  = -(1b
1 y (19b)

where the streamwise vorticity is given by

(h12 h3V .5- (h Sw, _ (h*>vq) (20)
L ay z

System of Approximating Equations

Introducing the inviscid approximation for convective terms and the viscous

approximation neglecting streamwise diffusion, and combining equations (2),

(13), (14), (15), (18), (19) and (20), the compressible Navier-Stokes equations

can he approximated as:

PM = p {C p ap ,- Fl'+2(WXV), + [WX(x?} X (

PM. + (ph I  a - + 2(WXv) I  + WX ( X f)Q = 0 (22)

2'. =M P C 2 x 2 F! 2-

pM3 = 3 + (ph-3 ap - F' + 2(Vwx) 3  + 1 X ( Xf) 3 = 0 (23)

V.

The continuity equation and equation of state, i.e., Eqs. (1) and (4) remain

unapproximated, and the decomposed secondary velocities TJ and l1 p satisfy

following relations

0VXU) = (24a)

- ',. ., - , . .. . .- ., , . . . ..* . - --.. -.. .,.... . . ". . ,- . . . -.. . . -. '.



-V ) = (24b)

The above seven equations provide a system of equations governing the five

velocity components u, v$, w , v , wp, pressure p and density p.

Approximate Equations as a Well-Posed Initial Value Problem

It was shown in Ref. 9 that for nonrotating coordinates the foregoing

approximations produce a system of equations which is well-posed. In rotating

coordinates, the equations differ only in the appearance of centrifugal and

Coriolis terms. These terms do not affect the well-posedness of the equations,

and consequently, the system of equations (1), (4), (21), (22), (23), (24a)

and (24b) is well-posed for solution as an initial/boundarv value problem.

Approximate Equations Written in New Dependent Variables

Although the dependent variables and the approximate equations given above

are convenient for the analysis, they are not convenient for numerical solution.

The equations are reformulated for numerical solution in terms of the axial

velocity, u, pressure, p, streawise vorticitv, S, scalar and vector surface

potentials, and p, together with density, p. The equations for Q, and p are

derived by taking the divergence and curl of the transverse vector momentum

equations (22) and (23). Let Ms = i 2M2 + i 3M3 denote the vector trans, Vrse

momentum equation, the equations governing streamwise vorticitv, Q21, and

pressure, p, are given by

.(VXpM ) = 0 (,)

V'(pM ) = 0 T,

Incorporating the definition of 11 and 11 ,' he ontinuitv equation ( I

hecomes

Vp(iu + V,4) = 0

--.-%b,.:



and the definition of Q, becomes

SI 1 =I VX(P-VXI1 1v) (28)

The final system of equations consists of equations (25), (26), (27) and (28)

above, the x momentum equation (21), the state equation (4) for the dependent

variables u, p, S, 4, i and p. These equations are given for a general

rotating orthogonal coordinate system in Appendix A.

Turbulence Model

In turbulent flow calculations, an isotropic eddy-viscosity formulation is

used for Reynolds stresses as follows:

PU U1  FLT n(29)

and the effective turbulent viscosity, PT, is added to the laminar viscosity,

L. The turbulent viscosity is related to mean flow variables by means of a

mixing length distribution

S 2 -/2"I T Pt (,2 e=i: e=)'  (30)

where e i.- the mean flow rate of strain tensor

J1- 2 (31)

The mixing length, Z,, is determined from the empirical relationship of

McDonald and Camarata [Ref. III for equilibrium turbulent boundary layers which

can he written

']"]';,,..,.. 1 Cy( ) -- 0.09 ton h . ,J( )
O.O9Ct f (32)

where 61) Is the lo(a bouindary layer thickness K is the von Krmanl constant,

. . . . . . . . . .. . . . . . . . . . . .--
--. B



taken as 0.43, v is distance from the wall, and 3 i; a suhlaver damping factor

defined bv

.N = P"/2(y*_ -*)/ (33)

where P is the normal probability function, y' Y( T/p)/
2
/(i/p), T is local

shear stress, v+ = 23, and o = 8. y is taken as the distance to the nearest

wail.

It is recognized that this treatment represents a major simplification of

the representation of the turbulent transport in a rotating system. However, it

is also recognized that turbulent transport effects are most significant near

the solid wall, and in this area a length scale varying with distance from the

wall provides a reasonable first-order estimate. Further from the wall, this

length scale variation becomes inaccurate, but here the flow is essentially

inviscid and the errors in the length scale specification appear less

important. At present, in addition to turbulence model considerations, there

are major issues in adequately representing the convective processes and in

obtaining accurate numerical solutions of the governing system. As a

consequence, the preseut simple turbulence model was considered a reasonable

starting point for the present turbulent work.

Numerical Method

The governing equations are replaced by an implicit finite-difference

approximation. Three-point central-difference formulas are used for all

transverse spatial derivatives. An analytical coordinate transformation devised

by Roberts [Ref. 22] is employed for each transverse coordinate direction, as a

means of introducing a nonuniform grid to concentrate grid points in the wall

shear-laver regions. Two-point backward difference approximations are used for

streamwise derivatives, although this is not essential.

-n all the solutions reported here, no-slip or symmetry boundary conditions

are prescribed, as appropriate. No boundary condition is required for density,

since it is computed algebraically from the state equation. The no-slip

condition, v = w = 0, must be expressed in terms of q, O and Q1. The normal

velocitv component is specified by prescribing 4 = 0 and the Neumann condition

5:--l--



component of the no-slip condition is written as

( + + p'VXiF) = (34)

where it denotes the unit tangent vector, and the finite-difference forms of

(28) and (34) are combined to provide a boundary condition relating Q,1 at wall

to * and t. A Neumann boundary condition for pressure, p, at a no-slip wall is

obtained from the normal momentum equation as

n [vp -pF' + pX; X (W_ X) 0 (35)

where the convective terms and Coriolis force term vanish because IT = 0. It is

beneficial to introduce a further change of variables expressing the pressure,

p, as

p = P(x, y,z) + Dm(x) + Ap(x,y,z) (36)

where P(x,y,z) is the potential pressure. Equation (26) now governs Ap, but

does not contain Pm, which is in effect the arbitrary constant of the Neumann

problem for Ap at each x-location. As a consequence, equation (26) can he

solved for Ap before Pm is known, and Pm can then be adjusted during

solution of the x-momentum equation to ensure that the integral mass-flux

relation

f(pu) dA = 0 = constant (37)

is satisfied, where A denotes cross section area.

A summary of the procedure used to advance the solution a single streamwise

step to the (n+l)-level xn+l from known quantities at xn follows. Unless

specifically mentioned to the contrary, the transverse velocities v$, w ,

vl,, wp and the density p are evaluated explicitly at the n-level. In

addition, the convective operator is evaluated as pnlln-V. Values of W, h 1 ,

h2 , and h3 are given and thus known at both xn and xn'I.

1. Equations (A.1) and (A.2) form a itnt-ar coupled system for Qnand n-

which is solved as a 2x2 coupled system. For this purpose artificial time

-12-
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derivatives are added to each equation, and an iterative block-implicit scheme

[Ref. 121 is used. In prescribing no-slip boundary conditions, the tangential

component (34) contains a contribution from 0; this contribution is evaluated

using 4n. Terms in the vorticity equation (A.1) containing u, v, w, v and

w- are evaluated using un, v n, wn v' and wY; x-derivatives of v- and w are

evaluated using n- and (n-l)-level quantities, wl, w2 , w 3 are known and

evaluated at n+1 level.

(2) The pressure equation (A.3) is solved for Apn+l using an iterative

scalar ADI scheme. In this equation all appearances of v Il and Wy + I are

evaluated using Vn+l and U, v, w, p, vo and w are evaluated using

. .- n-level quantities. rl, r2 , r3 and wl, w 2 , w3 are known and evaluated at n+l

level.

(3a) Using an assumel value of pm to begin a secant iteration and values

of Apn and Apn+l now available, the x-momentum equation (A.4) is solved to

determine un+l, using a scalar ADI scheme.

(3b) The density 0n+ l is evaluated from the state equation (A.5) using

-n+1 n+l n+j
Pm and Ap which are now available.

(3c) For internal flows the integral mass-flux relation (37) is evaluated

using uin+l and 0n+ 1.

n+l
(3d) Assuming that the initial guess for P1T was not exact, the integral

mass-flux relation will not be satisfied, and steps (3a-c) are repeated

iteratively using the standard secant method [Ref. 131 to find the value of
n+l
Pm that leads to un+l and pn+l satisfying the integral mass-flux

relation (37).

(4) Finally, the continuity equation (A.6) is solved for 4
n + l using an

iterative scalar ADI scheme and currently available values of un+l and pn+l.
n+1 n+1 n+l n+1 n+1

The velocity components v , w , v and w are then evaluated from

" , and n+1.

COMPUTED RESULTS FOR ROTATINg FLOWS

One of the motivations of the present study is the eventual computation of

flow in contrifugal turbomachinery components such as cent rifugal Impel ers.

The treatment of radial impeller geometries reqtl res that the present analysis
.J-.
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be generalized for use with nonorthogonal coordinate systems. This generali-

zation and the implementation in impeller geometries is part of an ongoing

investigation being performed under a related contract (DAAC29-85-C-0030). In

the present study, the analysis is applied to rotating flows in simple

geometries using orthogonal coordinates. The flows considered include laminar

and turbulent flow in a rotating 90 degree bend with square cross section and

turbulent flows in rotating straight pipes and ducts.

Laminar Flow in a Rotating 90 Degree Bend

The geometry and flow configuration considered are shown in Fig. 1. The

flow enters the duct axially and leaves radially. The Reynolds number

Re = UoD/v is 790, where Uo is the mean flow velocity, D is the duct width,

and v is kinematic viscosity. The duct has a square cross section, and the Mach

number was taken as 0.001, which means that the flow considered is essentially

incompressible. Both rotating and nonrotating flows are considered for this

geometry. The initial boundary layer thickness 6i/D was taken to be either

0.4 or 0.1. In Ref. 9, predictions for nonrotating flow with S1/D = 0.4 were

found to be in very good agreement with experimental measurements. For the

rotating flow, two cases are reported here, one with Rossby number Ro equal to

5.0 and the other with Ro equal to 1.0. The Rossby numher is defined as

Ro= 0o/2QD, where Q is the rotation speed.

The small-scalar potential approximation is examined in Fig. 2 for both

nonrntating flows and rotating flows with Ro 1. The initial boundary layer

thickness was 0.4. The maximum absolute value of each ( or P) component of

transverse velocity is shown against streamwise distance. The results in Fig. 2

show that the c-component of the transverse velocity is significantly less than

the s-component, except very near the entrance section of the bend. This

comparison is taken as an indication that the assumption of small U1 is

reasonable for these flows. The small-scalar potential approximation has proved

ideniiate in all the test cases considered.

Computed results for both rotating and nonrotating flow cases with

5/D = 0.4 are compared in Figs. 3-5. Shown in these figures are the

tran verse secondarv-flow velocity vectors, the streamwise primary-flow velocitv

contours, and the static pressure contours for the flow at the QO degree

Iocation, at the end of the bend. In the nonrotat i ng flow, the curved duct
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veomnetry generates a strong secondary f Low as shown in Fig. 3, and this distort,;

the primary flow velocity as shown in Fig. 4. The static pressure is shown in

Fig. 5. The rotating flow cases are also shown for comparison in Figs. 3-5.

The Coriolis forces in the rotating flow exert an increasing influence on the

f[,[w development as the system rotation rate increases. The rotation causes

additional secondary flow motion which tends to twist the counter-rotating

vortices present in the nonrotating case, and this further distortion increases;

--wi'. increasing system rotation rate, as shown in Fig. 3. The streamwise

ve! -city is shown in Fig. 4, and the observed distortion of the primary-flow

-'velocity contours in the rotating flow case is consistent with the predicted

secondary flow. Finally, the static pressure in Fig. 5 reflects a complicated

fnteraction of the primary and secondary flows as influenced by duct curvature,

ce,,trifugal, and Coriolis force effects.

g.Fig and Fig. 7 show the effects of initial boundary layer thickness on

the development of primary flow in both nonrotating and rotating 90 degree

bends. The thicker boundary laver causes a stronger secondary flow which in

turn generates stronger distortion in the primary flow as shown in Fig. h and

Fig. 7. Physically, the secondary flow is generated inviscidly by the turning

of transverse vorticity but its growth is retarded by viscous stress near

walls. Viscous stresses exert a stronger retarding effect on thin boundary

laver cases than on thick boundary layer cases. Thus, the thicker boundary

laver flow generates stronger secondary flow and distortion in the primary

flow. The computed effect of initial boundary layer on the development of

primary and secondary flow is consistent with experimentally observed trends

fRef. 14).

Turbulent Flow in a Rotating 90 Degree Bend

The geometry and flow configuration are the same considered for laminar

flu' (Fig. 1). The flow parameters are Re = 5n,n00, Ro = I.fl and initial shea;r

1aver thickness S I/) = (1.1. This calculation was started in the straig ht

xt,, ns Ion ups t ream of the hend at a distance of 1 . D from t h, st i rt of the

h d The dpvo-lopment of this flow at streamwise station, corrv, pondin , to 0

1( ) and (P) decrees of turning, are shown In Figs. Ra-d. The d0veI opmn'1t ()t

the primary and second;rv flow is shown in Figs. Ra-b. At the start nf the bc

d. .. ( degrees) there Is little ro IIs effect because the prim;trv flow v,-l cit i

Z' -15-
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parallel to the axis of rotation. There is only a small amount of secondary

flow, and this is due to the effect of geometric curvature. As the bend angle

of turning increases (30, 60, 90 degrees) there is an increased effect of

Coriolis forces, combined with secondary flows generated by turning of the

duct. The Coriolis forces cause additional secondary flow which twists the

- vortices induced by turning. The vortices migrate toward the forward wall in

the direction of rotation (the low pressure surface) and this behavior is

consistent with general experimental observations. A considerable amount of

listortion of the primary flow is present, as is consistent with predicted

secondary flows. Because the Coriolis force depends on the local flow speed,

the overall flow structure is quite complicated. The secondary flow velocity is

very large and of the same order of magnitude as the primary velocity in thin

shear layers along the inside and outside walls of the bend. These large

secondarv vortices are the result of the primary flow momentum deficit in these

shear layers subjected to Coriolis-induced pressure gradients.

The pressure coefficient for this flow is shown in Fig. Rc. At the start

of the bend, the transverse pressure gradients are relatively mild. The

gradient is essentially in the direction from outside to inside of the bend and

Is associated with geometric curvature effects. As the bend turning angle

increases, the transverse pressure gradients gain considerable strength and are

directed essentially in the direction of rotation with low pressure on the

leading surface. Finally, contours of the streamwise pressure gradient

(Cp/ax) are shown in Fig. 8d. These gradients are of interest because the

present analysis and governing equations were formulated to avoid approximations

for this term in the primary flow momentum equation. These streamwise pressure

gradients gain considerable strength and complexity with increasing bend turning

angle; the transverse variation in this term is of order unity. It would be

difficult to devise a pressure approximation for this term which would be

adequate for rotating flow structures of this complexity.

Turbulent Flow in a Rotating Pipe

The geometry and flow configuration for this case are shown in Fig. 9. The

Reynolds number Re = ITid/v Is 6 X 10 4  based on pipe diameter, d, and mean

axial velocity, lTm. The Rossby number Ro = Tlm/2SQd Is I.n, where Q is the

rate of rotation. The initial boundary layer thickness is 0.03 d, which was

-16-
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estimated from the entrance axial velocity profile measured by Kikuvama,

Murakami and Nishibori [Ref. 151 for these flow conditions. Kikuyama, Murakaml

and Nishiborl [Ref. 15] measured time-mean velocity and turbulent fluctuations

in this flow. They found the system rotation of the pipe has a stabilizing

effect in the suppression of turbulence. Using the mixing-length theory, thoy

suggested the following formulas for mixing length distribution to account for

the suppression of the turbulence due to pipe rotation.

L/Lo = I - BRi (38)

where Z and to denote the values of the mixing length for rotating and

nonrotating flow. B is a constant, and Ri is the Richardson number defined ly

Ri = .z =( (rw){QT-+ EQ )

Here, w is the swirl velocity and u is the streamwise velocity, r and z are

distances from the center and the wall of pipes, respectively. In the present

calculation, the mixing length distribution eo for nonrotating flow is

computed by using equations (32), (33), and the mixing length distribution for

turbulent pipe flow is calculated by using equations (38), (3q). The

coefficient, B, is chosen to be 2. The turbulent viscosity is obtained from

erluitions (30), (31).

Figures (i0a) and (lob) show a comparison of computed and measured

streamwise velocity, u, and swirl velocity, w, components at station x/d = 28.8.

The streamwise velocity, u, is normalized by free stream velocity, Ue, and the

swirl velocity, w, is normalized by pipe radius, ro, and rotation rate, S1. The

distance from the pipe wall, ro-r, is normalized by the momentum thickness,

nx. The computed and measured velocity distributions are In good agreement.

Turbulent Flow in a Rotating Duct

The i oentrv and flow configuration for this test caso aro shown in

* Vi. I . Tho rectangular cross section has a heiht to width ratio fl/1) = 0).36R.

Thi Pevii ,ds oumber, Re, Is 66,500, based on pass Ie hlvdr,itulic diarmt er and Trr';in

Svlo- t v. The Ps-hv number, Ro, Is 6, based o1 p;ss;!(, wiIth, T), an( m0a0

-17-
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velocity. The initial boundary layer thickness used in the calculation is

0.05 P. The mixing length distribution from equation (32) was used for these

calculations. In Figs. (12a) and (12h), the computed streamwise velocity in the

horizontal center plane and secondary velocity in the vertical center plane are

(ompared at K/D = 5 with the measurements of Wagner and Velkoff [Ref. 161 and

tht, computed results of Howard, Patankar and Bordynuik [Ref. 71. The present

r,,,ults agree very well with the measured streamwise velocity in Fig. (12a), and

the i'yroved agreement relative to the Ref. 7 calculation probably reflects the

iner !rid and resolution of the viscous sublayer region in the present results,

>,mptr-i with the wall-function treatment of Ref. 7. The comparison for

,,oeT ~.irv velocity in Fig. (12b) is less conclusive because of the difficulty of

m,,,ri small velocities near walls using hot wire anemometry.

CONCLUIS IONS

A ;patial marching analysis is described for -omputation of three-

1im'ensinnal viscous flows with system rotation. The governing equations are

ased on a small sca1hr potential approximation for the secondary flow, which

Ioes ,t entail any approximation of the pressure gradient terms. The analysis

was asqsessed by application to laminar and turbulent rotating flows in simple

rcucts and hends. This approach seems well suited for a number of rotating

internal ducted flows at or near design conditions, and can provide very high

resolution in three dimensions at relatively low costs. Adequate resolution of

turbulent flows including viscous sublayer resolution appears to require at

least 500,000 grid points even in the simple 90 degree bend geometry. Solutions

obtained by the present method using 500,000 grid points require only about 19

minutes of CRAY-IS CPIT time. Future work will address implementation of the

analysis in nonorthogonal coordinates and computation of centrifugal impeller

f lows.
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APPENDIX A

Governing Equations in Rotating Orthogonal Coordinates

The governing equations for the reduced form of the Navier-Stokes equations

based on the small-scalar potential approximation is gfven below In a general

rotating orthogonal coordinate system.

Vorticity Equation

,4..
PU h h3I + h 2 K),h, dx 3 dy 3JO az 2

+ - -_ 2 - ay -(hpu 2 K,,)ax dy hi ax d ,h

a 2apv V apv rv

T -(hzpu 2 KIZ) + dy a z 

(A.1)

+ apw a; apw az
ay dz az Oy

a h3  a a 0+ ] (/j + UT ) h , S"it

ay h1h 2 6y az h1h3 A aZ)

.,-

-2--- + 2 [ph (w U wW
ay [Ph 3 (w Iv -w 2 U)] a-2

Here, Q1 is streamwise vorticitv, and wJ, w2, , 3 are components, of thi system

rotation-rate vector. Kii is given in equation (16).

Vorticity Definition

0" y hlh2  p C~ Z hlh 3 p O A?

+ -2 h-

y "h Ihh

"'ILL:,



Pressure Equation

F a hlh . 0 a; hjh a] +-hh

+ (P+ 6p)+ hh
ay h 2 ay a h h z (  I 3P

3(A.3)

+ 2T-[ph1 h 2 (wgv w2 u)] a {h h 3 [w 3 ((' 2 r3 -3r )2 w(Jr _ 2 w2 r)]}

ap-fphlhF (wr r w - wA (w r w
az 12[L, 31 i-W 3  2 2 3-w 3 2 )]}

where C2  and C 3  ire given in equations (17), (18), and r , r 2, r 3 are

components of the position vector.

x-Momentum

u Ou vau w O
U + -- du+ w + +wKu3)

h I  x h 2  ay h 3  dz 12 3

-v K - w2 K + (ph)-I (P+ Pm+ Ap)/ax21 31 1

- wo r2 - w r ) + w 3 (w 3 r - w r)- 2 (w 2 w - 3 v) (A.4)

2 1p) i~ 2 2  ( 3+3' T)- ' + h~ 3(/L /L )

a hh I a

),'y (h 1 ) + h M I hK 
12

2
h h - - + h h C/~L)KI 3

z 3 ha~h

hhi h" - d h 72(11+4

' - -

U, ,"." "-'- '-.;, -".' .; ." . "L ... " ." '' " ".'"'"', ,.: '"".". .. '"% ,, ''.. . k.'' '.,? " " "



. ......1v l

State Equation

y-I uu
P +p m+Ap - p(E 0)m 0 2(A.5)

Continuitv

a~ ~ a hh a o_ A6
(hh 3 (P h1h2  0 (.6

ax 2h3pu)+ -dy h 2  dy dz h3 az -

-- 24

--. 4<



-S

-S

9Q0 V
.9

y
.1*

S.

-S

-S.
4- QO

-S

-S

I- D

5,

P.

-S
-S

I'..

*4 Figure 1- Rotating Flow in 900 Bend.
4-

-25-

'5,



0.9

--- Rotating case N

Nonrotating case
*0.8 - 0

-~ 0.7-

0.6 - 4 component/

.0.5-

0

S 0.4-

.4. 0.3

-A. 0.2

4) component

S..
'4oe

001

.r 9 0 10 20 30 40 50 60 70 80 90
DEGREES

-5-6

I,..F.



z z

.141

- 44 .. '.I?

4.';"-4-4-.... - - ":- -.. ; ' - .... ;' \ ' \ N"--  - . . . . "- } 1

* .' 4- - . . . . . . . .... 4.j i.4'l / . _ . . .

,,, ,. . .. . .. . . .. . . . . . .. 4 l l - . . . . . . . '

4. *1 7 ,

*, m . 0.4 9 , . ., m , . 5 , ,

-, . 4 . . . . .. , D ,
.... .> _'----- . _ - .- .- .-: -.z-:*. , -a - a.-" - - '

8 x 9, Maximum I: 0.49,0 ,

•O 1."' 8 1/D 0,.Ir v. 4 .a- - .: .
..... ./ . .- - - . .. .. .: ti.. . . ,, . .. .4 ,

.'."4. 4 ., ..

" 
4"

" '" '" 0 : 9 0 , M axim um U s I 0 6 83

.o;,O[, ,,DO4o
.14

.'!
iW' II r -- _

*4.-.-

4. ..,.'.- 4.4. ,4- -.- -- --4-.-. .. -.-.. , ,,,+ ,,,< .,. .. . . .4444 .. .. .4.. . . -......... . ....-.... . .......



z z

161 16

46 0 8 1.3 '11.5

go90, maximum IUo, p 1.61, e go*0, maximum UPI 1.64,

RO 10 10, 8 D =0.4 R0  5.0, S/D 0.4

z

6.63 /~

0.7

it3 38

0 900, Moximum l p 1 1 53,

R =I0 ID 0



z z

-0.65

-0.6

0O.8T -0 69 -0 -0.4 0.2 0.4

Maximum Cp0.13, Minimum Cp z 1. 14, Maximum CP=O.877, Minimum Cp -0.651,
Q90-, Ro 0  0, 8 1 /D 0.4 e 90', R0  5.0, 1 /D 0.4

z

23 /

/38

90- 304 = 1 D ,



z

Iti

045 0.58 0.1 i ' j
--------- )

-1.4

9a 90, Mximum 16 pI a 1.6, R 100, 1 D 0.4

F i~jurf! 6 -Efff~ct of I nit ia 1 Boundary Layer Th icknes~s on Primary Flow in a

N ),,rota inq '10'Pend

4.%



z

0.75 N '

&90* Maximum 1U, p 1.753, R0o 1.0, Bi/D z0.4

z

0410 1.51

90* Maimu luI s~ '1.51, Rot 10, 8i/D-C0.1

r .ry y.1 k ...



03

00 300

* 0

144

ROTATION

INSIDE OF BEND

I~ 1 11



00 300

0.9 0.0

60 10 1 00

~1.2

.1d3

.rOWN=

ROTATgON

.6 .- .....

0N.ID OF EN
0. .

0. .

.1.3

4..-. ROTATIO

INID OF.--. BEND~- -''.-



0C 300.

-0.2 0.2

0-0.

0.00

0.2

-0.2

600 900

00.4

ROTATION

INSIDE OF REND

Fiqur-. fic - De-velopme~nt of Pressure Cofet i ci,rit f (c rc r 'rcrhulent Flow

d\. in a Potating 90" Rend.

34-



0. 300

-0.2
0.

0.00.

00.0

0.0

-0.22

600 900

0.8

0.8

1.0
04

0 C2C1 .
h. 4 0. A .2

0.6

0.40. 0.2 0.8

0.

ROTATION

NSIDIF OF BEND)

-35-



S1 FLOW

-II

Figure 9 -Geometry for Rotating Flow in a Pipe.

-36-



COMPUTED

0 MEASUREMENTS OF

KIKUYAMA

I0-

0

0

(r ° -r)/ x _

5[

' /

P-'i-

V1.0

0.. .5 
.0

~u/U
e

v,. - - :.:_, ,, -0( t r ,rwi . . ,'. l,, II' r ,, .1. t A ; , t: .:i K/ I ;H C, F. ',,

* ", 

-3 7-
-,, .

_ , .-, -..,. .,, ..,.. .. ........ ......... ........ .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .,..-,.,:



10 COMPUTED

* .~, 0 MEASUREMENTS OF

a KIKUYAMA

8

(r- r) /e

-~ 4.

20

00
0 0.5 1.0

w/r .Ri

i-i'lir. l1b1- Transverse Velocity Profile at Station X/I) 28.8, R0  10

-38-

~:vJ ;-. *. . 4,.*. ., * ~ . - -. 'N
4, p 1 L



~Z,W

- ". -- INFLOW

'4* ..

.
H

Xzw

Figure 11 Geometry for Pttit n g Flow in a Strai ghit )llt- .

~-39-

Je



1.2

0 A 0OA 0 A0 O0 OA r

1.0

-:-.

0.8

u/U m  0.6

0.4

4-,

Computed

,0.2 A Measurements of
Wagner and Velkoff

0 Computed, Howard et al.

-0.5 0 0.5

y/D

SF'xgur 12d - rFturewi 2a Velocity Protil(! it Station X/D = 5.0, R0  = 6.0,

-- 4a-



.- ,Wr W,

Computed

A Measurements of
Wagner and Velkoff

0.1 0 Computed, Howard et al.

V/Urn

Ink

0 .

A"

-~-0

-0.02 6

0 WALL

-0.0

0 0.5

z/H

Figure 12b -Secondairy, Ve nc itY Prot ii it stat ion X/D .

.%

-P.0 e o- '
4/

-4 1-

-0.04 .

0%%* .* ~, P 0.5. .'



1:

.1

~~r.*' ~.

~ 9/

V..'

I
$1

* '. - .. V *7'.~
7-

. .. --.


